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PARAMETER ESTIMATION AND IDENTIFICATION

FOR

SYSTEMS WITH DELAYS

H. T. Banks, J. A. Burns and E. M. Cliff

Abstract

Parameter identification problems for delay systems motivated

by examples from aerodynamics and biochemistry are considered. The

problem of estimation of the delays is included. Using approximation f
results from semigroup theory, a class of theoretical approximation

schemes is developed and two specific cases (baveraging and 4splined

methods) are shown to be included in this treatment. Convergence

results, error estimates, and a sample of numerical findings are given.
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1. Introduction

The estimation of parameters in dynamical systems is an impor-

tant scientific problem on which a number of contributions have been

made in the engineering and mathematical literature (e.g. see [1],

[23]). However, for systems with delays, very little on identifi-

cation is found in the engineering literature and essentially no

theoretical convergence results are available for algorithms

dealing with estimation of the delays themselves. One obvious dif-

ficulty (from both a practical and theoretical viewpoint) with such

procedures is that solutions of delay systems are not in general

differentiable with respect to the delays and thus many common

(e.g. least squares gradient, maximum likelihood estimator, etc.)

identification techniques are not directly applicable.

In this paper we discuss a class of methods based on general

approximation techniques for systems with delays. These approxima-

tion ideas have been considered earlier in the context of optimal

control problems ([3], [4], [5], [6], [7], [9], [12], [18]) where

they have proved quite useful. The use of such approximation ideas

in connection with parameter estimation procedures was apparently

first suggested in [11] and some preliminary theoretical results

were stated in [7] and [13]. However, our presentation here is

the first (to our knowledge) rigorous treatment of general theoret-

ical aspects of these ideas.

While we do in section 7 below give a small sample of related

numerical findings, the primary purpose of this manuscript is to

present a theoretical foundation for the schemes we propose. A

much more extensive discussion and a wider selection of numerical
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examples is presented in [8]. Our sample of numerical results in

section 7 is included here mainly to indicate that the procedures

based on the schemes discussed actually are feasible.

The approximation ideas developed earlier in [5] and employed

here are based on approximation results (the so-called Trotter-

Kato theorem) from linear semigroup theory. In section 2 we

formulate a class of identification problems for delay systems and

show that they can be reformulated in an abstract setting so as to

make use of the semigroup approximation theorem. A version of the

Trotter-Kato results needed is given in section 3, while in section

4 we show how to use this theorem to insure convergence for a

class of identification schemes. We turn to the detailed develop-

ment of particular schemes based on "Averaging" (see [51) and

"Splinet" (see [10]) approximations in the subsequent two sections.

Finally, a brief indication of numerical findings for these two

particular schemes is given in section 7.

Notation used throughout the paper is completely standard.

For example, Lm(a,b) = L ([a,b],Rm) denotes the usual Lebesgue
p p

spaces of Rm-valued "functions" on [a,b] whose components are

integrable when raised to the pth power. When m = 1, we shall
suppress its appearance in the notation. Lp,lo c denotes the

usual "locally" integrable function spaces. We shall use the

symbol 11 to denote the norm of an element without distinguishing

between different norms if the intended meaning is clear from the

context. The space of functions with j continuous derivatives

is denoted by CJ(ab). We shall also make use of the Sobolev
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spaces W j)(a,b) W (j)([ab],Rn) of Rn-valued absolutely continuous

functions possessing j-1 absolutely continuous derivatives and

jth derivatives that are in Lp.

In the remaining paragraphs of this introductory section, we

turn to a discussion of examples which motivate the theoretical

questions that are the focus of our attention in this paper.

Li
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1.1. Tubular reactor columns and delay system

identification and control problems

Packed bed tubular enzyme reactors are very important in

many areas of industrial and biological applications (potential

uses involve purification or classification of fruit juices,

proteolytic treatment of beer, synthesis of essential amino acids,

enzymatic biosynthesis - i.e., synthesis of antibiotics and steroids.,

etc.). These are column reactors (as depicted in Figure 1.1) con-

taining enzyme pellets (i.e. pellets in which an enzyme is insolubly

bound), the enzyme being specific for a substrate S which is

passed through the column. The substrate diffuses into the pellets

where the enzyme catalyzes a reaction resulting in the product P.

AE
S

S P

FIGURE 1.1
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We thus have enzymatically active particles or pellets in a

convective flow region. Any model should embody important features

of the system including (i) enzyme catalyzed reaction, (ii) metabolite

(S or P) diffusion into, out of, and inside of the pellets, and

(iii) metabolite convection (and possibly diffusion) in the flow

region in the column exterior to the pellets. Extensive studies

for both plug-flow (PF) models and diffusion-convection-reaction

(DCR) models for the phenomena involved have been reported in the

literature [ 15], [ 161. These models can be formulated from first

principles using transport equations of the form

as + C 2s Da 2 s +Da 2s +V
2x 22@-+c - = DI - + D2 - V

where DI,D 2 are diffusion coefficients, c is the convective

flow velocity, x is the column axial direction, y the perpendicular

direction (in a 2-dimensional model), and V is a nonlinear reaction
s

velocity approximation (e.g., V = -P -+s) . The column in this case

is approximated by a two-compartment (pellet phase and liquid phase)

model as shown in Figure 1.2.

PF models incorporate assumptions that one may ignore diffusion

in both the pellet and solution (flow) regions. Careful investigation

of these models reveal that they are of limited use in actual

applications since it is found that certain kinetic constants must

actually be allowed to vary (in an unpredictable manner) with the

flow velocity in order to fit the models to experimental data. On

the other hand, the DCR models were found to perform quite adequately

when compared with the data. The main difficulty in employing the

mL, I......
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PELLET PHASE

LIQUID PHASE

X
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y

FIGURE 1.2

DCR models involves the rather lengthy calculations that must

be made in carrying out identification and control procedures with

these models. It is, therefore, desirable to have a model which in

complexity and accuracy (hopefully similar to the PF models with

respect to the latter) is somewhere between the PF and DCR models

and for which efficient numerical procedures are available.

A candidate for such a model has been proposed by J.P. Kernevez

and his colleagues at Universitd de Technologie de Compibgne. It
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consists of n functional compartments for the column, each con-

taining two subcompartments, one representing the pellet phase and

the other the liquid phase. The two subcompartments in each

compartment are connected by diffusion while the main compartments

are connected via unidirectional transport (convective flow) be-

tween the liquid phase subcompartments (see Figure 1.3).

COMPARTMENT i-l

COMPARTMENT i

PELLET PHASELIQUIPHS

COMPARTMENT i+l

FIGURE 1.3
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Defining variables as follows (all are scaled and dimensionless):

ri(t) = substrate concentration in liquid phase in

compartment i at time t,

si(t = substrate concentration in pellet phase in

compartment i at time t,

pi(t) = product concentration in liquid phase 
in

compartment i at time t,

qi(t) = product concentration in pellet phase in

compartment i at time t,

one can write mass balance equations to obtain a model

dr1  _ rl(t) - 5{rl(t) - sl(t--T)) + u(t)

dr. f.t
dri a{r i-1(t T) - ri(t)} . {ri(t )  - si(t-'[ )} ,  1 ,

ds iat- -PF(si(t)) + vO{ri(t) - sj(t-T1 ), i > 1,

dpl  -cPl(t) - Pq

dpi d ~pi (t-T) - pi(t)} - {Pi(t) -qi t-T2)}'i>i
dt _ fp1((t

dqi
PFd5(t)) + v {pi(t) - qi(t- 2 ) }  i > 1.

d- - (t (si}
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Here F is a nonlinear reaction velocity term, the delays I, l, 12

are transport times between compartments i-l and i, between pellet

interior and liquid region for substrate, and between pellet interior

and liquid region for product, respectively. The term u represents

input of substrate to the liquid subcompartment of compartment 1.

The parameters , , are all related to biochemical and physical

constants for the column configuration. For example, =NseV

where N is the "apparent" number of pellets per compartment,

V = volume of liquid per compartment, Ds = coefficient of diffusion

for S within the pellet region, e = "thickness" of the model

pellet region, and E = effective surface area per pellet.

Using data collected from a number of specific experiments

performed with tracer, product, and substrate inputs, one wishes to

determine values of 1,Tl,1 2 ,P,8,0 so that the model describes

accurately the operation of the column. Once this is done, the

model then must be used to design (optimal) control procedures for

the column.

We thus have classical identification and control problems

for systems (let xi = (ri,si,pi,qi) T)

i(t) = Ao(Y)xi(t) + Al(y)xi(t-tl) + A2(Y)xi(t-. 2 )

+ f(yXil(t-T), xit),ut)1

where the delays T,,,2 and the vector parameter y (involving

*: only coefficients) are to be identified.
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1.2. Identification problem for hereditary systems
in unsteady aerodynamics

We consider next an interesting class of identification

problems which arise in the study of unsteady aerodynamics (see [ 2 ]).

Consider a thin, flat airfoil mounted on springs as shown in

Figure 1.4 in a region where we have fluid (air) flow with un-

disturbed stream velocity U (in the x-direction). Flow around

the airfoil is disturbed and we assume it has velocity q = (u,w).

Laws of conservation of mass and momentum lead to a system of partial
differential equations for the fluid velocity components u and w.

Assuming incompressible flow we have the continuity equation

V-q = 0. Elementary hydrodynamics also yield that curl (q) = 0

from which we deduce the existence of a velocity potential y so that

q = V(p. The equation of continuity then becomes A p = 0. We

restrict our considerations to small motions of the airfoil so that

a linearized theory may be adopted. We assume that p is given by

(P(Xzt) = T(x,z,t) + Ux

where P is a disturbance potential. It follows that V must

satisfy

(1.1) = 0.

In addition one has the (flow tangency) boundary conditions
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(1.2) (x,Ot) = w(x,O,t) = Wa(x,t) -i < X < 1

where w a is a given function describing the motion of the airfoil.

We here assume that the airfoil is a thin plate located at z = 0,

-1< x < 1 as depicted in Figure 1. S.

-I' After arguments involving a conformal mapping of the airfoil

into the unit circle and the introduction of sources (elementary

flows along radial lines) and vortices (elementary flows along

concentric circles), ime finds that a solution of (1.1),(1.2) for the

disturbance potential P consists of an appropriate collection of

sources distributed along the airfoil and any weighted combination of

"compatible" vortex pairs. A "compatible" pair consists of one

vortex on the airfoil at r = rI < 1 and an oppositely rotating one

at r - > 1. Compatible pairs induce a flow with finite angularr1

momentum and with fluid velocity that is tangent to the airfoil. The

required distribution of sources is uniquely defined by the airfoil

motion (wa(x,t) in equation (1.2)) but the distribution of vortices in

the wake given by a density function Yw(4,t) is as yet unknown.

In lieu of yw we introduce a new function r termed the circulation.

For brevity we shall "define" r by

(1.3 fCt -(l))u = - Yw( ' t)

with the boundary condition r(--) = 0. This relationship reveals

that vorticity in the wake at time t and position was produced

by a change in the circulation at an earlier time, i.e. an

hereditary phenomenon is involved. In integrated form (using
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FIGURE 1.5I

FIGURE 1.6
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r(--)= 0) this becomes

(1.4) r(t) - Y (4,t)d o.

To determine r (or yW) we impose an additional hypothesis,

viz. finiteness of the fluid velocity at the trailing edge of the

airfoil. Mathematically this is written

(1.s) vt) + +1 Yw( ,t)d= 0.

Here v is the contribution to the velocity due to the source distri-

bution. Subtracting (1.5) from (1.4) and using C1.3) we thus obtain

t) + I () ( -l))d
(1.6) r(t) v( f f()(t - U

1 u

where f( ) = T - 1. This finally is our model equation

(see [ 28], p. 292) that is the basis of hereditary models in un-

steady aerodynamics.

A simple change of variables = 1 - a in the integral in (1.6)

yields the equation

(1.7) r(t) = v(t) + J f(o)r(t+ (Y)d°

where ?(a) E f(l-a). This is essentially a neutral functional

differential equation with infinite memory. Among the numerous

approximations made in the derivation of such a model is the

expressin for f

i
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(1.8) f( ) = (+1)/T-1J - 1.

It turns out that the transverse velocity component w exhibits a

boundary layer phenomenon as sketched in Figure 1.6 where r is the

horizontal distance from the trailing edge of the airfoil. Thus,

the expression for f in (1.8) is valid only for >> 1. To better

approximate this phenomenon in (1.7) one might approximate f by a

function g having the form

C a1 < a < 0

g(a;cz,BI) = {B'o -- <0o<0-
-f~a < a <-i

when it is understood that o,O must be chosen so that g is

continuous at a =-P. The model then is given by

to
(1.9) r(t) = v(t) + g(Co;Cf3,A)r(t + U)da.

Assuming smoothness of g we formally integrate by parts the

integral in (1.9) to obtain

r(t) = v(t) - a(a)r(t + )do

or letting s = t + a in the integral and defining G( ) =
U

we have

(0v -t(1.10) r(t] v(t) - f G(s-t)r(s)ds.
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Equation C1.10) is a retarded FDE with. infinite memory which, upon

differentiation, yields the more familiar form

P(t) ir(t) - G(o)r(t) + ft0 (s-t)r(s)ds.

In practice, one often would desire to replace the integral term by

a finite integral

t (s-tm)r sds

*1T

in which case one obtains an equation (taking rct) = xCt), observing

that G(O) = ACO) = a and identifying (Ct) = u(t) as the input)

ft

(1.11) k(t) = -ctx(t) + f Ug(U[s-t;a,O,P)x(s)ds + uCt).

An important identification problem then consists of making observa-

tions corresponding to an input uCt) = vCt) and using these to

estimate the parameters a,OP, and T so that the model yields a

sufficiently accurate description of the aerodynamic phenomena under

investigation.

II

-1

*1,
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2. The fundamental identification problem for delay systems

We consider in this paper n-vector systems of the form

(2.1) *i(t) =L(q)x t + B(ca)u(t), t > 0,

with initial data

(2.2) x(0) n f, x 0  E R, Ln~ 2 Rn ,O

and output

(2.3) y(t) =C(cO)x(t) + D(cI)u(t).

$ We make the following definitions and assumptions about the

operators and parameters in (2.1)-(2.3). There exists a fixed

given r > 0 and compact convex set SI a R"' and we define the

compact convex set Q a R1 V+' by Q S S x a/, where

sY.= {h = (r1,r 2,... ,rv) E RvI 0 < r. f ri~ < r, i =1..,-.

For a function x we adopt the usual notation xt(6) = x(t+O).

For a given element q =(Q,h) in the admissible parameter set Q,

wedefine th oeatr L(ai: fL(,f~ R o (2.1) by

V

(2.4) L(q)* Ai(COC-r. +1 K~CIe) ()dO

where ro 0, and for each Ot C Ql, Ai(Ca),B(cL),C(O,), and D(01) are
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n x n, n x m, k x n, and k x m matrices respectively. We assume

that the n x n matrix valued function 0 K(a,0) is in L2 (-r,0)

and that the functions Ai,B,C,D,K(,.) are continuous in .

Remark 1: In (2.4) one must give the proper interpretation to

point evaluations in the event 0 is only an L2 "function".

Since in (2.1) we are interested in integrals of the system, the

usual interpretation is intended here (see [ 10] for a more detailed

discussion).

We further assume that we are given an initial data set

defc Rn X L(-r,O) that is closed, bounded and convex and we

define

r Y x Q = x d

as our admissible initial data - parameter set. Elements Y in r

will be denoted in one of several ways throughout our discussions

below:

Y = (n, ,q) = (Ti, ,c,h) = (n,Oc,rl,..

where q = (a,h) = (a,rl,...,rv). For each Y = (n, ,q) in r

we shall denote the output to (2.1)-(2.3) at time t > 0 by

y = y(t;Y).

Identification of the system variables Y in (2.1)-(2.3) is

based on input-output information. Given a piecewise continuous

control input u defined on some time interval [O,T], one samples
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the system at times {t}, 0 < t < t 2 < ... < tm < T, to obtain

observations {yi E i = 1,2,...,M. One can then performi ~~1 i '*

a least squares fit to data (or seek a maximum likelihood estimator

for y). Formally, we may state this as follows:

Problem: Given the input u and observations {yi} at times {ti},

find Y*= (r*,¢ ,q ) in r which minimizes the fit error

M2

(2.S) J(y) = £ ly(ti;Y) -iI2i=l

Remark 2: Whenever r* < r, one only needs 0 defined on

[-r*,0] in order to obtain a solution to (2.1)-(2.3) (in practice,

this is exactly what we shall obtain). However, we can view
(n*,O*) as an element of Y by making a simple (arbitrary but

definite) backward extension of ** to all of [-r,oJ.

.1i
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2.1 An abstract formulation of the I.D. problem

Let r > 0 be fixed and given as in the previous section

and define Z E R n x L n (r,0). For q =(cz,h) E Q and (n,O) E Z,2

define for t > 0 the mappings S(t;q): Z Z by

S(t;q)(ri,O) = (x(t;Y),x t(Y))

*where x is the solution to (2.1) with u E0 and x t(e) = x(t+O),

-r < e < 0. It is easily verified that for each q, (S(t;q)1 t>0 is

a strongly continuous semigroup of linear operators on Z. Further-

more, one finds [5 that the infinitesimal generator *(q), with

domain

= ( EO ZI E W~l)(-r,0), n = ()}

is given by

We note that for q E Q, 9(jV(q)) does not depend on q itself.

However, for k > 1, -9CQ k (q)) does depend on q. For example,

O 2(q)={OO,~ W(2) (-r,O), *(0) -L(q) }.

If we define the operators B(ct): Rm -,. Z and t(ct): Z _+ Rk

fby 9Ccl)u -(B(c1)u,0) and e(a)(n,O) = C~a)n, then the delay

system (2.1)-(2.3) is formally equivalent to the abstract ordinary

differential equation CODE) system
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(2.6) i(t) = S,0(q)z(t) + c(a)u(t), t > 0,

(2.7) z(0) = (rl )

(2.8) Yt) = C(a)z(t) + D(a)u(t).

As in the usual theory dealing with semigroups and abstract

differential equations, a mild solution to (2.6)-(2.8) can be given

by a variation of parameters formula. Specifically, (2.6)-(2.7)

has the mild solution z(t) = z(t;Y,u) given by

(2.9) z(t) = S(t;q)(n,) + S(t-F;q)B()u(c)da.

It is a happy circumstance that (2.9) is actually equivalent to t
(2.1)-(2.2) in a strong sense as we now state precisely (for proof

see [ 4 3, ( 5 ] or [ 6 ]).

Theorem 2.1. Let x(.;y,u) denote the solution to (.2.1)-(2.2)

corresponding to y E Z x Q and u E L2 ,loc" Then, for all t > 0

z(t;y,u) (x(t;Yu),xt(Yu)).

In view of the above equivalence results, the I.D. problem for

(2.1)-(2.3) posed above can be reformulated in terms of an abstract

I.D. problem. That is, given input u and observations {yi } at

times fti}, find Y* = (n*, *,q*) in r so as to minimize J(y)

as given in (2.5) when now y(t) is given by (2.8) and (2.9) in
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place of (2.3). Whether the problem is formulated in terms of

£Z.8), £2.9) or (2.1)-C2.3), it is clear that we are dealing with

I.D. problems involving infinite dimensional state systems.

Formulation in the framework of the Hilbert space Z only emphasizes

this and is in no way an essential factor in the infinite

dimensionality (and the associated difficulties) of the problem.

Our main interests here are identification schemes that will result

in computationally efficient algorithms. The approach we take is a

classical one of the Ritz type. We shall choose a sequence of finite

dimentional problems, each of which is defined on a finite dimensional

state space XN and approximates the original I.D. problem in Z.

By appropriate choices of the sequence {XN} and the corresponding

approximating problems, we hope to obtain a sequence of more easily

solved problems with solutions yN = nrN , N,q ) which converge to

a solution y of our original problem.

Fundamental to this endeavor is the convergence of the

underlying approximating systems to the original system (2.9). Our

formulation in a functional analytic framework will allow us to

utilize abstract approximation theorems from semigroup theory

(e.g., see [ 5 J). The problems here, however, are a little

different from the control problems of [ 5 ] where one chooses a

sequence of subspaces ZN c Z on which to solve approximating

control problems. The I.D. problems to be treated below pose some

additional difficulties in that for each value of N, the "state"

space changes. That is, the natural space for (2.9) with

N .(NrN N Rn n N
q r,...,rv) is ZN Rx L2 -r ,0) which, in addition

to varying with N, is not a subspace of the original space

it
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Z Rn x L'C-r,0). The approximating spaces XN clearly should be

chosen so that XN c ZN.

There are abstract approximation theorems Cmotivated by

differencing schemes for partial differential equations and

applications from probability theory) available in the literature

in the case where ZN Z. For example, the original Lax, Trotter,

Kato efforts [20], [26], [17] resulted in such theorems as did the

later efforts of Kurtz [19]. However, all of these versions of

the approximation results (and all others with which we are familiar)

require the spaces XN to approximate Z in the sense that there

exist projection-like mappings PN: Z 4 XN which satisfy a norm

convergence criterion IPNZIX I zI as N 4 -. For the problems
N X

and approximations we shall discuss below such a criterion is not

Nmet (in general, one will not have r r, where r is the a

priori chosen upper bound for the hereditary effects in the systems).

We shall, therefore be obligated to state and prove an appropriate

version of the abstract approximation results and this is done in

the next section. The arguments used to establish this theorem are

very similar to the standard ones found in the literature. One has

a sequence of approximating infinitesimal generators (i.g.'s) AN

which converge in some sense to an i.g. A. This convergence is

sufficient to imply convergence of the resolvents R,(AN) to R,(A).

These are the Laplace transforms of the corresponding semigroups

SN(t),S(t) respectively and their convergence is enough to guarantee

the desired convergence SNt) SCt) We make this more precise

in the next section.

,I

4
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3. An abstract approximation theorem

Let Z and ZN, N = 1,2,..., be Hilbert spaces with norms

1.1 and I-IN respectively. Let XN be a closed subspace of

ZN and 7N: ZN - XN be the canonical projection of ZN onto

X along X Suppose -YN: Z - ZN is a mapping satisfyingXN  al N N .

Im(JWN) ZN and [ YNZIN < Izi for z E Z, Finally define

PN: Z XN by PN = rN-XN" (In our discussions for the I.D.

problem above, Z = Rn x L2(-r,0), ZN = Rn x L2n(-r ,0) , XN is an

approximating space such as the AVE spaces of [ 5 ] or the spline

spaces of [ 10 ] - these will be discussed fully below. Finally,

-YN is the operator that takes z = (n,f) in Z into z = (n,)
N

Nwhere 0 is the restriction of 0 to [-r,,O]. We note that in

this case we would not expect to have !PNzIN - IzI for z E Z

unless rN - r and IN itself has certain convergence properties.)

We adopt the following standard notation for the presentation

of our fundamental approximation results. For a Hilbert space X,

we write B E G(M,8) to mean B: 9(B) c X - X is the i.g. of a

C0-s.g. {T(t)} satisfying IT(t)I < Me. We also denote the

resolvent (I-B) 1  by RX(B) and recall that RX(B)x

foe- XT(o)xda.

Theorem 3.1. Let Z,ZN,XN, and P be given as above. Suppose

for some M,O we have AN E G(M,O) on XN and A E G(M,O) on Z.

Further suppose there exists - c O(A), - dense in Z such that

(i) RX(A)9 c9 for ReX> 0,
(3.1) (ii) for every z E , IANPNZ - PNAZIN + 0 as N * .

1* ll
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Then for every z E Z

(3.2) ISN(t)PNz PNS(t)zIN+ 0 as N

and the convergence is uniform in t on compact intervals. Here

AN  is the i.g. for S N(t), A the i.g. for S(t).

Remark 3.1. Implicit in the statement and proof of Theorem 3.1 is

the assumption that PNz E 9 (AN) for every z E Z. In our use

of the theorem for I.D. schemes below, XN will be finite

dimensional and 9(AN) = XN. Indeed, we shall find AN bounded
A~t

with SN(t) = e N

Proof: Let X be fixed throughout with Re X > so that

RX(AN), Rx(A) exist. We first establish that for every y E Z

M P NA) RX(A)y IN

(3.3) IRX(AN)PNY - PNRX(A)yIN < -R e- I(ANPN - PNN

From the definition of the resolvent operator we have for any

operator B

RX(B)B = BRX(B) = XRX(B) - I.

In particular

R (AN)ANPN = )RX(AN)PN PN

PNAR'X(A) = XPNR X(A) -P

. . . .. . N-- - ; ' ' . , .. . . , . - N .. . .. .. ."
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so that

RX(A N)A N PNRX(A) -RX(A N)PN ARX(A) =RX(A N)PN -PN RX(A).

* Hence for any y E Z we have

IRX(A N)PNY -PN RX(A)y IN

-IRX(AN)[ANPN - PNAIRX(A)y IN

-R-X-7I(A NPN PN A)RX(A)y IN'

the last inequality following from the fact that A N E G(M,O).

Next, for given z E LO where -9 is as in the hypotheses,

define

F N (o) ESN (G)PN z - PINS (a) .

Then from (i), (ii) and (3.3) we conclu~de that for Re > >,

I.VX[F NIN -O as N

where Y.is the Laplace transform. we observe that from the

bounds on S NP N-1S the sequence (FN)} is uniformly exponentially

bounded, i.e.

IFN) 2Me "Izi.

Finally, since

Mi
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Ud NS() z = PNS(T)Az

and

UT NC)PNz = SN()ANPNZ,

a simple quadrature reveals

(3.4) FNCO) = f:[SN(I)ANPNZ - PNS(T)Az]d'i

and it follows that {FN} is a pointwise equicontinuous family on

[0,=). (From the convergence in (3.1)-(ii) and the bounds on SN

and S, one easily verifies that the integrand in (3.4) is uniformly

exponentially bounded.) We are thus in a position to use a lemma

due to Kurtz (Lemma 2.11, p. 359 of [19]) to conclude that

IFN(o)IN - 0 as N - -, uniformly on compact intervals. (Actually,

the lemma as stated by Kurtz requires uniform boundedness of {FN }

but a careful inspection of his proof will convince the reader that

this requirement can be replaced by uniform exponential boundedness

as we have here.)

We thus obtain the desired convergence (3.2) at least for each

z E . But then standard density arguments (the triangle

inequality, bounds for SNPN, and the density of o in Z) can be

employed to establish the convergence for all z E Z.

Remark 3.2. We note that in the above theorem we could have

hypothesized AN E G(M,8) on ZN instead of on XN without
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altering the proof. However, in the applications we have in mind
ANt

we wish to obtain invariancy of SN(t) = e on XN (the space

where our approximating systems will be defined and used). Thus,

if we posit AN E G(M,O) on ZN we must add the additional

hypothesis Im(AN) C XN c 9(AN) in order to use the approximation

result as we desire below.

Remark 3.3. One can clearly choose XN = ZN (with TN then the

identity on ZN or ZN = Z (and -PIN the identity on Z) and

obtain other versions of the approximation results. Again, our

choice here is dictated by the applicatin to be discussed below.

Remark 3.4. In the event one has ZN = XN C Z and P N: Z ZN

satisfying PNz + z for z E Z, then the condition (3.1)-(ii) can

be replaced by IANPNz - Azi 0 and the conclusion (3.2) by

ISN(t)PNz - S(t)zI - 0. This then is essentially the version of

the approximation theorem that we employed in previous efforts dealing

with control problems [ 4 5, [ 5 ].

Corollary 3.1. Suppose the convergence in (3.1)-(ii) is O(N " )

whenever z has the form R,(A)y, S(t)Rx(A)y, and S(t)R,(A)y,

X> , for a given y E Z. Suppose further that the constants in

-6p O(N- ) are uniform in t in the latter two cases. Then the

convergence in (3.2) is also O(N- 6) whenever z = Rf(A)y for

this y.
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Proof: Using rather standard arguments (p. 87, [221) one finds

that

U-0 SN(t o)RX jAN)PNS()~Ax

S N~t-G)[PN RX(A) - RX(A 14)PN]S(o)x

j for arbitrary x E Z and X > ~.Hence, we have

t
(.5). J SNct)[1PN R)(A) - RX(AN)P]Sa)xd7

R X(AN)CPNS(t) -SN(t)PN ]RX(A)x.

Using (3.S) and (3.3) we have for any y C Z

I2
ItsN (t)p N - p NS(t))RX(A)y) N

SISN(t)[PN RXCA) - R'X(A N)PN ]RX(A)y IN

ii+IR(N)[SN(t)PN - PNS(t) IRX(A)y IN

+ [R(N)PN - PNRXAl tR(~IN

< Me at IPN RX(A) - RX(A N)PNIJRX(A)y IN

+ ft S (t-c)lI{PN RX(A) - RXk(AN)PN'S(a)YIN do
0O N

+ RX(AN)PN -PN xA~~tR(~IN
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< MeBt M I(pNA - ANPN)R 2(A)yIN

+ JtMeB(t -a) T-M I (PNA - ANPN)S(o)Rx(A)yIN do

+ M I(PNA - ANPN)S(t)R2(A)yIN.

Thus, if y is chosen as in the hypothesis of the corollary, the

conclusion follows immediately.

Theorem 3.2. Let W c _9(A 2) satisfy the following:

(i) For each z E 9 there exists k = k(z) such that

[(ANPN PNA)z(N < k/Ne N = 1,2...

(ii) There exists -01c j such that z E 1 implies

(a) S(t)z E W, 0 < t < T,

(b) S(t)(AI-A)z E q, A > 6, 0 < t < T

and furthermore the constants guaranteed by (i) for (a), (b) can be

chosen independent of t.

Then for z E -I we have there exists k(z) such that

I[SN(t)PN - PNS(t)lZIN < k(z)/N 6

for 0 <t < T.
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2 2(~Proof: Let z E A and define y = (AI-A) z. Then R2(A)y = z.

Furthermore, by (ii) we have S(t)R 2 (A)y E._ and S(t)RX(A)y E

with the constants in the O(N- 6) estimates uniform in t. It

follows that the hypotheses of Corollary 3.1 are satisfied and

hence we reach the desired conclusion since z = R2(A)y.



7- -

31

4. Identification schemes for delay systems

Let WO ,11 be the coordinate projections of Z =R n x L2(-r,0)

onto Rn, Ln(-r,O) respectively. We recall that the I.D. problem

of §2 can be written:

(_9): Given input u and observations {Yi}  at {ti }M

find Y= (r*,#*,q*) in r so as to minimize

M^

J(Y) 1
J jly(t.;Y) - Yili=l 1I

where y is the solution of (2.8), (2.9). That is,

y(t;Y) = C(c)z(t;Y,u) + D(0)u(t)

C C(a) 0z(t;Y,u) + D(a)u(t)

= C(a)x(t;Y,u) + D(c)u(t)

Thus the identification problem can be viewed in a state-

space Z, parameter space r setting. This will lead to a sequence

of approximate I.D. problems if we approximate Z by a sequence

of spaces XN.

We henceforth assume that we have in hand a sequence
N Nn n rN

Nr, and take closed XN  ZN Rn x Ln(- 0. Then
we } dein th opraor .9:.

we define the operator "N Z Z as the operator that truncates
il N N*NI
z flz to the interval [-r V0] and then denote by _N the Moore-li.

Penrose [21 ] pseudo inverse -YN: ZN - Z. In this case if

Z E ZN , then tN(n,*) = (n,O) where 0 = V on

N N
C-rv01, = 0 on [-r,-rv).



32

Let {SN(t)) be a C0 -semigroup on XN with i.g.
AN E G(M,B) and let PN: Z - XN be as given in §3. We define

rN a XN x Q by rN = (PN-V) x Q where Y is the given initial

data set. We make the following standing assumption on Y and Q.

Assumption 4.1. Q and Y are compact and JN .X'

for all N.

From this assumption and the continuity of PN' we readily
NMN'

obtain that rN is compact. Given Y = (z 0 ,q N) r N we define

N 0
N N N A N

(4.1) zN(t;yN9u) E S N(t)zO + 0oSN~t-a)PN B(aN)u(o)do

and

(4.2) yN (t;yN) -(cN)zN(t;yN ,u) + D(aN)u(t)

C (aN)0 z N(t;Y N,u) + D(c N)u(t).

The approximate I.D. problems are:

A 
-

50N) :Given input u and observations (yi , find N E rN so

as to minimize

N N M N N 2.
j(Y) _Y lyS(ti;yS) . yi

i=l

We note that solutions to -6N) exist since the mapping
IN J N() is continuous on rN and rN is compact.
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Theorm 4.. SuposeN -N
Theorem 4.1. Suppose y = (zO'q) is a sequence of solutions

to the problems -5N) and that there exists Y E r such that

N-
Y N in the sense (a) qN + q in,+ (b) _YtzO -* Zo in Z.

Suppose further that AN = AN(q ), A = A(q) satisfy the conditions

and hypotheses of Theorem 3.1. Then

IPNz(t;T,u) - zN (t;Nu)IN + 0 as N ,

uniformly in t on compact intervals, where

(4.3) z(t;Y,u) S(t)Y0 + S(t-oB(alu(o)do.0 f

Proof: From the hypotheses and Theorem 3.1 we have immediately that

ISN(t)PNz - PNS(t)zJN 0, uniformly on compact intervals, for all

z E Z. Therefore

N t-N PN(t 0
IsN(t)z 0 PNS(t) OIN = ISN(t)PNJr NZ0 PNS(t)OIN

< ISN(t)[PN4 Nz- - PN 0]IN + ISN(t)PNZ- PNS(t)zIN

< Me t~N NN 0 0I + ISN(t)PN 0  PNS(t) 0IN •

The first term approaches 0 by (b) as does the second from our

preceding remark. Next, consider

Ii
*1i

-I!
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fJtS (t-a)P B(&7N)u(a)da - PN JS(t-oF)B(CZ)u(a)do

t J INdo)NIIB( ) p ~x]~)~c

[S J Nt-a)PNBSC - aN~~1)Bc )() Cc ) d
I N

The ~ reut ofThorm3., hentiut f) n oiae

* ~ ~ ~ I conergnc yil covreceo hs trst , nfrl

00n

(4.4) i (t - N -tz i o eN~t a ch z E Z.)

Then reudrtheamtos of Theorem 4.1, wee hotniy fave dmiae

(4.4 71y (P; N ) -) yrozti R for each t. Z

Proof: Recall

* y(t;SV) = Q(a7)z(t;T,u) + D(U)u~t)

(a" ff C i0 z(t;j,u) + DL)u~t)

while
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yN(t;yN) = CcL-)TT0zN(t;N,u) + D(CO-)u(t).

The claimed result follows at once from the result of Theorem 4.1

I1TOzN(t;yN,u) - 70 PNz(t;Y,u)I Rn - 0,

and (4.4) which yields

7r0 PNz(t;Y,u) - i0z(t;Y,u)I n - 0.

N

We observe that in (4.1) we define z for initial data

in XN. However, one can define an analogue for initial data given

in Y. In particular for fixed y= (z0 ,q) E r =Y x Q we define

(4.5) N Ct;Y,u) - SN(t)PNzO + f (t-)PN B )u~a)do

where A N = AN(q), A = A(q) are i.g.'s for SN,S. If one then

assumes that AN(q),A(q) satisfy the hypotheses of Theorem 3.1

so that IPNS(t)z - SN(t)PNZIN - 0, one can prove in almost exactly

the same manner as that for Theorem 4.1 above that

l N(t;y,u) - PNz(t;yu)IN - 0

for Y E r. Defining y N(t;y) as in (4.2) except with zN(t;y,u)

NNof (4. 5) in place of zN(t;y ,u), we have under hypothesis (4.4)

the analogue of the results of Corollary 4.1:
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~N

(4.6) y (t;Y) _ y(t;Y)

for each fixed Y E r.

NTheorem 4.2. Suppose { } is a sequence of solutions of the

approximate problems (9 N) under Assumption 4.1. Then there
Nk -Nk

exist 7 E r and a subsequence (Y such that y -

in the sense of Theorem 4.1(a), (b). If AN(q N),A( q-) satisfy the

hypotheses of Theorem 3.1, then 7 is a solution for the problem

(9 ).

N -N -N
Proof: First we have YN (zNq ) E (pN-V) x Q. Defining

-N tf-N NSNz 0, we have E 9 , Y' compact, so that there exists
Nk

a convergent subsequence, say {zi }, converging to some z0

N

Sin YP; i.e., _Yk -if N 0 - Z 0 in Y. From the compactness of Q,

we have that { possesses a convergent subsequence with

q -~ for some q- E Q. Defining y = (i0,-q) E r =' YXQ
N.

and reindexing we thus have a sequence {7 3} that converges in

the sense of Theorem 4.1(a),(b) to 7. Furthermore, it follows from

Theorem 4.1, Corollary 4.1 and the remarks involving (4.5) and

(4.6) that for any y = (z0 ,q) E r we have

N. N. N. N.

J(i) = lir J 3(7 j) (Corollary 4.1 yields y 3 (t;T 3)~N.+-

But we find

IM-I
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N. N. N.
lir J J T J) <li J J((PN.z0,q))

N..

But y Jzt;(PjZ 0 ,q)) given by (4.1) is exactly the same as
N.

J(ti;Y), Y = (z0,q), where N is defined as in (4.5), (4.6)

and hence the latter term is the same as

lir J(ti;Y) - = J(y).

Thus, 7 is a solution for (9).

We turn next to a discussion of particular schemes which fit

into the theoretical framework developed above. Throughout our

presentation we shall assume that we are given a sequence
NNN N N NI nN(awhen q , = , ,...,r)N)  Q, with

N N NN
0 <r 1 <r < ... < rV < r, and qN - - = ,h7) = . Q.

We recall that for the systems under discussion we have the operator

* s'fI i) defined on -9 {((0),)j 0 E Wl)(-r,O)} given by

wher 4~)@0),@) = (L()(,DL)

where the operator L is defined in (2.4). Hereafter we shall use

the notation DO in place of f in context where confusion might

arise otherwise.

-1
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We summarize for future reference the conditions that our

approximating schemes must satisfy:

(4.7) XN is a closed subspace of Z = Rn x Ln(-r N,0), TN is
NN 2(r,) v is

the canonical projection of ZN onto XN PN = Y

and T 0(PNz) 7 0 z for all z E Z.

(4.8) There exist constants M and 0 such that (q= (N)

and jQ(= ./(q) are in G(M,a) on XN and Z respectively.

(4.9) There exists 1 c = ( !l dense in Z,

such that

(i) RX(-W(q)) 1c -91 for X >

(ii) i-2NPNZ- PN-WZIN 0 as N-* for z E

In our discussions below we shall refer to (4.8) as the

stability condition while (4.9) will be called the consistency

condition. Our first scheme will be based on the averaging

approximation developed in some detail in [ 5 ] while the second

scheme utilizes spline approximations as formulated in [10].

~1

.1
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5. The averaging approximation scheme

This identification scheme is defined using the "averaging"

type approximations as discussed in [4 ], [ 5] and many of the

arguments to verify that conditions (4.7), (4.8), (4.9) are

satisfied are only slight modifications of those found in [ 5].

Given qN = (cN ,rl,... rN, we partition [-r N,0] into sub-NMN

intervals [tN t.] i where t -jrN/N, j = 0,1,... ,N. Let

denote the characteristic function of [t )_1N for

N N N
j = 2,3,...,N, with X the characteristic function for [t1 ,t0 ] =

[-rN/N,0]. Define for ( E,) E Z
N

j-iNN
N_ N f N (s)ds, j = 1,2,...,N,j r N N

V t.
(5.1)

N
10 n.

* We define the closed subspaces XN  of ZN by

NX E= n N N N Rn }XN-{(ri,*) E ZN] rn E Rn, qJ j Xj v E Rn}.

NNj=1 J

The projection 'TN of ZN  onto XN  is then given by

N N N
(5.2) 7N(n,) = (n, .X.).

j=1 J

With these definitions it is immediately obvious that (4.7) is

satisfied.

For the operator L given by (2.4), we define the approximating

operator LN (q N ): XN Rn  by

I
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NV N(.) LqN) Cn, N N N N N
1 J A0( ) ij=1 j=1

N N N
+ K K.QN )v.

j=1

where

tN
N

3 ' N
t.

Next, we define D N X N N (v0 by

N NNN

1 ~ ~ j= rV

whrnvf. Finally, we define -W~ N N b

The proof that -Q1 (q N) E G(M,O) on XN for some M and

independent of N is essentially given in [ 5] (see p. 183 and

p. 186). One first argues that there is an equivalent inner

product (,N on X N such that (- NqN)zzN Oq N)(~

for all z E XN. As in [ 5], we define, for given NN, N1..I.
~N .N N .N

the index set J {l'* .,i,-O where j is the index such

tht - N N ' Nan j N N. We next
i i N V

define numbers 0~ by N 1 and, for j =N- , N-Z,. .. ,
3 N
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r Nj a+1 if j E J
N N

j+l if j e jN.

Then define the nondecreasing piecewise constant weighting function

g Nby g NO) = a N  t.N < 6 < tN  j = 1,2,... ,N. Finally, weg by 3 3 j-l'J=i,,. .

take ZNgN) and XN(gN) as the spaces ZN,XN respectively with

equivalent topology generated by the inner product

(5.7) {(n,) ,(;,) N = (ri'g)Rn +fN ,g.

g -r

N n

If we then consider (n,tP) = (n, EX ) E XN (and define v
j=l J 0

we find in a straightforward manner using estimates similar to

those in [ 5, p. 186] that

N) A n lv) N 2 2
(5.8) (-(N(q )(n,'),(n,* ) N < {IAo C~n )I + T iAi (a N )I T In

fv+ IV. I, ( + I .nj, + I <v..,-v.,v> aj
i=lii =1J j=l 3- j "N.

Noting that for = vjx

N r 2
I(n,fl)IN = InlZ +  E "- IV Ia

j=1

w f-1~we find
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NN N N T

I IK N a )I IV.I In -N £J N KaN

N 12N

< I£~

*1 
N

o N

1 ~ ( Iu~t Id6 + ' I 2
-2 N j=1

I fI I"K -I

[1~ - N n,)2

Next observe that

NN
N N. < Iv j 2 1 2 1
I ( =1.v )a1- 1 - IjIj

jjj=1 + 3INa

j 2 j-12

3: l~IN-1



43

Using these estimates in (5.8) we finally obtain

N A T, * ) rlJ/ N < O(q N n')N
g

where

O N N 2 N 2 V+lO(qN _-A0(aN) ilty a)1 + 1 JNK(aN'6l d6 T-

-r.j

From the continuity assumptions made in §2 (see (2.4)) and the

fact that qN E Q, Q compact, we have existence of such that

0(q) < for all N. Finally, since the X and XN(g norms

are equivalent independent of N, one finds (again see p. 186 of

[ 5]) %N(qN) E G(M,) on XN. Since Q(q) is the i.g. for a

C0-semigroup it also satisfies the requirement _Q'(q) E G(MI,8 I)

on Z for some M1  and a1. It follows that the stability

condition (4.8) is satisfied for our averaging approximations.

IWe next consider the consistency criteria (4.9). We take
j 1

4 1 -{(O(O),)IJ is C on [-r,O]}. Then clearly 91 is

dense in Z and 04 c (% j)). Furthermore, RX(A(-q )) a1 c

2 -1
OW '2(q)) c 91 (see §2 above) so that (4.9)-(i) is satisfied

for this choice of 0.

It remains to establish (4.9)-(ii). Given z = ( (O),O)

in 91 we observe that

N NNN
(5.9) PN./(q)z (L(q) , 1(Do) jx)

where

-I
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tN

CD-N t. DO(s)ds N [(tN

j.~) r N N r N j0-lt I-
J

while

. .pN N NN N N
(S.10) -eN(qN)PN z = -N(qN)(000 0' L X = (LN(q )PNz,DNPNz)

j=l i

where LN(qN) and DN are given by (5.3) and (5.5). In view of

(5.9), (5.10) and (1.4), it thus suffices to show

V N NN

(5.11) A(aN)Q(O) + V N N N N N  N N N
(S.11)~ ~ ~ AXa)OO A.(a )0 x (-rN + Ka0i=l j=l jj j=lj

V 0
n->. A0 (a) (0) + Ai() (-ri) + J K(Z,0)O(0)d6

R i=1 -

and

0 N N (ON _ N)N N 12 0(5.12) - ( l-) NN (DO x
-r jl r.

as N m (and r. -).

Consider (5.12) first and write this integral as

N 2

N r1

N ( 0 N _ N 2t N

tN

T N+ TN ."1 2'T
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Using an analogue of (3.18), p. 177 of [ 5] with r replaced by

NrNo estimates similar to those of [ 5] yield

N Nsup
I<j<N J

where, as in [ 5], we define

S.sup l cO)_ Cs)l s, 6 E tNtN

NUse of the analogue of (3.18) of [5] in T allows us to write

(after arguing in much the same manner as done on p. 177 of [5])

N N  2
NI .- )I +1 I f

T< N 2 J

Since WN 0 as N , uniformly in j, we conclude that (5.11)

obtains.

We remark that if $(0) = 0 and * E W(2)(-r,0), then

NN Nr- r( -V

0 (-N 1(--N) -0(0) 1 supkey

and, since -WN is 0(- see p. 178 of [ 5], we find that the

1
convergence in (5.12) is 0(y) or that the convergence in the

+, 1
second component (L2 component) of (4.9)-(ii) is 0(1).

Returning to (5.11) and recalling that Ai(aN) - Ai(a), we

see that to establish 5.11), we only need show
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N NN N
(5.13) E. -jXj( -r) O *(-Tri ), i = 1,2,...j=l 3 11

and

N NN (5.4) K.(aN K 0 a) d a.
j=l 1

For in CI on [-rN0] we have for E [t N t_

t - N t -I

(5.15) IN- )I = -a [ ()- (O) da < r N 1 1 lI l- 0do

rV t. V t.3 J

N N
rV 2 r

N1 I V (N-) = I NI. -

-I

From this, it follows immediately that

N NLi 2)2,_, rv
(5.16) Iz *jxj--j C-N o)< (N-)

= hsns tN N N f
-1 For ji jN chosen so that -r. E [t , ) we find

using (5.15)

NN N NN)  ON.

I-  xj(-r - - < N - - ) + (-r
. rNF V N

1 ll. - + II.Ir -Fi
II

and thus the convergence in (5.13) is insured by the convergence

rN r with the order given by 1 if ri is of this order.

I
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Finally, in considering (5.14) we note that

N
N N NN j-1 ,O) do

j=l J J jlt N.~ a

Joi j jlNf N(
N

= J K(aNO) 1 0.X (O)dO

rN j=l 
j

and hence

AN KN(aN N - 0

j=l f

= (aN (y) [F

f-r N K i*j x(a) - P(o)]do + NK( N')O(a}du f Ka o)(o)doo.
= -rV  -rV

We thus find

JA 1 0 J~aN G~j2 o'1/2 0 JEN xN 2 11
/ IANI < N'K(aN ,ldo Ij0  *jx.-q 12

/-r N J fr( - N

,K(N ,a)O(o)dG- fK(,o)O(o)do.
-rv  -rV

N N
second term yield that it - 0 since K(aN , ) 

- K(-,.) in L

and rN - V. The order of convergence of the second term depends

on that of these latter two. If Irv-r [ = O( ) and if the
N1 AN

convergence K( N ,) K( ,) in L is 0(1), then is

2 N
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0 1  also.

In summary, we have established (4.7), (4.8) and (4.9) for

the averaging approximation I.D. scheme. In doing so we have also

shown that under certain circumstances, the convergence in (4.9)-(ii)

is OCI). In particular, if in qN q' we have

NN

(5.17) (a) The convergence A( A) i A0() is ),

N N(b) The convergence K( N, " 
4 K(@,.) in L2(-r, 0)

is 0( 1

N Q1
Cc) r. * r is i = 1,2,...

1 1 N'

(d) z = (i(0),c), T EC on [-r,0J, p(0) = 0,

then I i(0NPi 0 - ) is (1).

Remark 5.1. We remark that the conditions (5.17a-c) clearly are

f not conditions that can be verified a priori when using the/-
averaging scheme in practice. These error estimates merely provide

information as to how well the scheme might perform when applied to

specific I.D. problems. Note that the particular method (maximum

likelihood estimator, least squares, etc.) chosen for determining
N

q will obviously affect the rates of convergence in (a)-(c) above.

Finally, if one drops the condition 4(0) = 0 form (5.17d) but

retains all other conditions in (5.17), one finds the order in

(4.9)-(ii) is only 1/.

I .. j i . . . . ..- .
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Remark 5.2. Recalling the order estimates on (3.2) given in

Theorem 3.2, we observe that one can easily find sets and

-q1 to satisfy the hypothesis of that theorem in case of the averaging

based scheme. For example, to insure convergence of order 1/1N,

one can choose the sets R = 9(-V2 ()) and -ql = 9(-3 (q))

= {(4'0),') I 4' E 4 3 ) (-r,O), (O) = L(O), (O) = L( )1. Then

one can, under the assumptions (5.17a-c), without difficulty argue

the claimed order results.

I1

/
/I

4.t
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6. Spline based approximation schemes

We discuss in this section an identification scheme based on

spline approximations. While we shall present the details for a

scheme based on first order splines, arbitrary order spline

approximations may be utilized in a similar manner with only slight

modifications in the arguments indicated below (see the theory

developed in [10], on which all of our discussions here are based).

Given qN cNN NaGienq Co= rl, ...,r ) q = (a,ril,...,Irv) as we have

hypothesized previously, we partition each of the subintervals

N,-rkNl], k = 1,2,...,v, into N equal subintervals to define

the partition {tN ) vN  of [-r N,0] with

(6.1) tN (j-(k-l)N)(rN r N)/N + rkN

j = (k-l)N,...,kN, k = 1,2,... v. We then define the finite

dimensional subspace XN c ZN by

N

XN = {( (0),f)I * is a first order spline with knots at {t.}}.

N
We define the weighting function g by

NN1 -r < O < -rv-l

2 -r Nl < < rN
- v-2'

NNg ) =
V-1 -r e < -r 1

v -rN < 0,
1
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and, as in §5, denote by ZN(gN) and XN(g N ) the spaces

ZN and XN endowed with the equivalent topology generated by the

weighted inner product (5.7). We then define 7N: ZN + XN

Cequivalently n N: ZNCg N) XN(g N )) as the orthogonal projection

of ZN(gN) onto XN(gN). Then (see [10 , p. 509]) for q in ZN,

we have INP = ;N where N is the solution of the problem of

minimizing L N) over i E XN. The operator PN Z + XN
ZN(g N)

is defined as before by PN = -N

We adopt the following notation. For any function 4 that is

defined pointwise on [-r N0), we write (4),fl and
AN = (0N(o),ON ) where N is the interpolating spline (with knots

at {tNN ) for 4 on [-rNo]. For the projections fN
j=l N

defined above we shall write N$ - = iN = (N( 0 ),N).

For any qN E Q, we define the operator

N N N
,(qN): (_(qN))c CZN + ZN, where _(_Q'(qN))

= {(O(0),) E ZNI[ E Wfl)(-r ,0)}, by

N N

'(q N 0 (0),)= (L(q N)),D).

More generally, for any q E Q, we can define V(q): c Z + Z

by

'(q)(CO), ) = (L(q)M,D4).

Note that in this latter case D is defined on [-r,0], while

in the former Do is defined on [-r N 0]. However, in both

* I
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cases the operators are essentially the same and in the discussions

below we shall abuse notation and speak of -W as an operator

defined either in Z N or Z, depending on the context. We note

that XN c -9(-c(q N) so that Q(CqN) is defined on all of XN

With the definitions above, we have immediately from Lemma 2,3

N*of [ 10 )that -(V( q )satisfies

N NN2

where

V0
WN) 2V~i + I A(COLN)I + j Ai(caNI 2 

+1I IK ((N,e)12 dO.

We next define N ~(q N): XN 4XN by

(6.3) f(q N) 7-f( )T

n~~ N E efn

Inview of (6.2) and the fact that n N x x fo n xE N' efn

for every x E XN

(-( q )x,x) N r = ( (q N)x,x)

=(-.Q(q N)x,x) < w(q N)1x1 N'

As noted in §5, there exists 0 such that w(qN ) < for

all N and thus jWNq N E G(M,O) on X N(g ) and hence

-g(Nq N E G(M,$) on X N frsome M independent of N. Similar
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arguments establish that .-'(Cq) E GCM, ) on Z for M,S

appropriately chosen and it thus follows that condition (4.8) is

satisfiedi by the approximations C6.3).

We turn next to the consistency condition (4.9) and define

_9CV3C~qA.This set is dense in Z and it follows at

once that RC(.'(7j)) 01 c -1so that C4.9)-(i) is satisfied.

For z = C~O),fl E -91 we have

-Vf(qN)P~z = TT,,(L(q')0,D N)

where = CO = while

p N-Q(q~z= TrN .. LCq)O,Dfl.

It thus follows that for z E -1 N N _ L q q , D ON

C64)I-N N PN-QzIN = INT (L(q )0 - (0,D~~ ))IN

where we now understand that D(O N_ ) is to be taken as a function

on [-r N 0]. Recalling that ~n is the orthogonal projection of
N NN

z N(g N onto X N(g N and that the norms of ZN(g N and Z N are
equivalent (with constants independent of N), i.e.

I1rNzI N IzI N < mIzIN, we see that (6.4) allows us to establish
g g

condition (4.9)-(ii) by verifying

(6.5) ID(NOl 0a



54

and

(6.6) IL(qN)0 - L(j) I n 4 0 as N ,

where in (6.5) the norm can be that of L2 (-r N0) or L2  with the

weighting function (see (5.7)) gN

To show (6.5) and (6.6) we shall make use of standard

estimates from the theory of spline approximations. Specifically

from Theorem 2.5 of [24 ] we find, upon considering the interval

N N M-N[tkN t(kl)N], k = 1,2,...,V, which has mesh size h = (r k-r k)/N,

t(k-l)N N l{ rkrkl}(k1)N 2 2(6.7) / N ID(,_0I) I < 1 2 kr- N . N I1

t N  -N

and

N' N

(6.8) N2 L .I ,, I 4 - N ID 012
ftkN {r(~] N 22
tkN k

tN 2
Here is the interpolating spline for * E C [-r,O] with

knots at {t.). Denoting by I1 2,N the norm in L2 (-rv ,0), we

deduce from (6.7) and (6.8) the estimates

)I {maxlr.-r
.  }(6.9)1 I ( 'N I2 N -< j j- 1f N 1*I ,N

-1 A .j1 m



and

(6.10) IN !l{m l 1 N-rN_ I 2 1 I2 02
I 1~I2PN - 2mxrr I i-~ IDi1

NZN

Denoting by 11 the weighted norm in L (-r N 0), we easily

argue for 0 = (O),O) E -9 (using the minimality properties

associated with w

12N< 1 N'N I ' N < N

< I~'' gN N c~I2Ng < /VIN 2,N

9~~ ~ ~ N 1NgN2N

iso 0(61) al so. eta hslatqatt s y n ec
NN

We remark that we have shown that '7No"^IN - 0 whenever

,~E -91. The density of -91 in Z and the boundedness of

{1N thus imply this convergence (I7'Nz-zIN + 0) for all z E Z
7 and the condition no (PN Z) -+ ff z for z E Z of (4.7) is satisfied.

We next consider the inequality

(6.11) IDCON_ 2, ID(O0 N I)I2,N

and observe that the second term is 0(1) by (6.9). We employ

the Schmidt inequality [I 24 1to estimate the first term. Since

both 0 N and 01N are linear on each subinterval [t0,0-1] we have
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N

NN 4

N N)f

N
NN 2W f k-i O~NN

k=1 [(rkN-rklN ] k

N N
V-r -r

<N N{r 10-011+
k=1 [(r -rk N)7 f-rk

TN N
T1 + T 2

Using (6.8) we obtain the estimate for TN2

fr~r~ 1 2  Nr~
T: 2N -~r YD kI k ID ~ 2ID 2 I2,N.k=1 7r NN

k i
To obtain the desired estimate on T N we need an additional

assumption on q=@r, Specifically we assume:

(6.13) There exist 6 > 0 such that Irk--rkl_,I 6, k 1,2,... ,v.

With the assumption we find (for N sufficiently large)
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TN2 0 _ 1 2 _ 4$cN 2 sN_0 12

2 N

"( /z) f N 62,"

But our arguments above revealed that I 1-2,N is O(1) and

NN 1 N
thus TN1 like T 2, is OC -1 ). It follows from (6.12) that the

N

first term in (6.11) is O(1). We have thus, under the additional

assumption (6.13), established (6.S).

N
Finally, we observe that, for -r < < OP

,N( ) cP N(0) + D

= N N(0) + D

and thus

< -- ( (0)-q)(0)j + N
-r V

N N_< 10 I (o)- (o)I +  VTID(*N-*)1 ,N•

But these last two terms are O(N), uniformly in 0. It follows

that 10N(-ri) - *(-ri)J is (l). Since 0 is continuous and

N II N N
q - we find that L(q )0 * L(q)O and thus (6.6) obtains.

Summarizing, we have shown that (4.7), (4.8), (4.9) (where

7N is now the projection of ZN(gN) onto XN(g N)) hold for the

first order spline based scheme defined by the operators in (6.3)

under the assumption (6.13). Furthermore, if one inspects carefully

the estimates given above, one finds that under the hypothesis

.1!
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(5.17a-c), the convergence in (4.9)Cii) is 0(1).

3-Remark 6.1. In the above estimates we had chosen 1 = (V,(q))

so that 4 in (6.4) and the subsequent arguments was in

W(3)(-r,O). To apply the needed estimates (e.g., Theorem 2.5 of

[ 241) and make the arguments above, it is actually sufficient to

have *in W(2) (-r,O) (see Theorem 21 of [ 2S ]). We thus

could have just as easily chosen Q1 (-Q(e )) and arrived

at the conclusions above, including the convergence rates obtained.

Remark 6.2. In light of the above remark, we may, in order to
1

obtain that the approximating semigroups converge like O(R) for

the scheme developed here, choose -Q = 9(.2 (-)) and

4 -1~ =  ( 3 qC)) in Theorem 3.2. Under assumptions (6.13) and

(5.17a-c), one then can readily verify that the hypotheses of

Theorem 3.2 are satisfied by the spline-based approximations.

'i
I1
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7. Numerical results

In this section we present a brief summary of some numerical

results for the identification problem obtained using the approx-

imation schemes (AVE and SPLINE) outlined in the two previous

sections. For a more detailed discussion of the numerical perfor-

mance of the AVE and SPLINE schemes in identification and control

problems, the reader can consult [8] where numerous examples,

error analyses, etc. are presented. The summary given here, -aken

with the extensive numerical tests reported in [8], support our

claims of efficacy and practical usefulness for these methods.

In order to generate the data for testing the algorithms we

select a "true" set of parameters y* = (n*, *,a*,r*)(we take v = 1

and r1  r) and a control u and use the method of steps [141 to

solve for x on the interval [0,T]. In all of the examples presented

below "data" was generated using r* 1 and u = u. , where u is

/ the unit step at t = £ defined by

u9 0 = t < i,

I < t,

Iand 0 < I < 1. The final time of T = 2 was used. The observations

yi = y(ti) were generated at 101 equally spaced time steps on

- [O,T]. It is possible to add noise to the "data" to produce

"1noisy observations" ^(t) = y(t) + v(t), where, for example,

-i' V(t) = col(v(t), ... , v(t)) is a computer-simulated vector of

normal random variables vi(t), each with zero mean and preset
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standard variation. This was done for some of the examples in [8]

(we do not do it here) where one again finds that the algorithms

perform quite well.

For each fixed N, the approximation problem ( N) was solved

using a maximum likelihood estimator (MLE). The resulting solutions

-N -N
are denoted y and Y for the AVE and SPLINE schemes respectively.

Since the MLE is an iterative procedure it is necessary to supply

a startup value (i.e. an initial guess) for the parameters N or

NyS. If B denotes an unknown parameter to be estimated (e.g. B = a

or B = r), then 8NII will denote the estimate for N obtained after

I iterations of the MLE applied to problem (-6? The startup

value is denoted by 6N,O

Example 7.1

In this example we seek to estimate the initial data
/

(n, ) E R x L2 (1,0) and the coefficient of the delayed term in a

4 simple scalar equation. The system is described by the equation

k(t) = .05 x(t) + a1x(t-I) +U.(t),

with (unknown) initial data

x(O) = n, Xo(s) = O(s), -1 < s < 0,

and output

y(t) = x(t).
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Data was generated as described previously using the true values

=1 * =_ 1, a* = -4.0. For each N = 2, 4, 8, 16 and 32, the

approximating problem (6?N ) was formulated as discussed in section

4. Thus, for AVE we seek the "parameter"

-N N N N
YA= ( 1 €2 ' N

N N Nwhere (n,O1,42, ..., IN) are coordinates of the AVE projection of

the initial data. Similarly, for SPLINE we seek the "parameter"

-N N N N
YS= (EO'El' "''' N 'al),

N N N
where (&0,Ei, ..., IN) are coordinates for the SPLINE projection

of the initial data. The "start-up" for (n,o) E R x L2(-1,0)

was taken as the zero initial data (0,0), whereas the "start-up"

for a1 was chosen as aNO = -3.0. Table 7.1.1 provides an overview

of the numerical findings. Because the initial data is in

R x L2(-IO) we have only displayed the Z-norm of the error and
I N

the estimated value for al. The comparison of the two schemes is

quite striking; in particular, note the relative accuracies in

estimating the initial data. Compared in Figure 7.1.1 are graphs

of the true initial data and the corresponding estimates produced
by AVE and SPLINE for N = 4. It is apparent that (at least for

the chosen "start-up" values) the SPLINE procedure readily finds

good estimates for the parameters, while the AVE scheme has con-

siderable difficulty.
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It is of some interest to compare the sequence of data fits

generated as the MLE iteration procedure evolves. Figures 7.1.2,

7.1.3 and 7.1.4 show the data matches from the AVE algorithm (with

N = 8) for MLE iterations 0, 4 and 9, respectively. From the

match at iteration 4 (Figure 7.1.3) it might be deduced that the

AVE scheme is in trouble. However, at iteration 9 the fit is quite

good and Figure 7.1.4 does not give any hint of the poor values of

the parameters indicated in Table 7.1.1.

Figures 7.1.5, 7.1.6 and 7.1.7 illustrate the SPLINE matches

at iterations 0, 4 and 9, respectively. Again the iteration 4

matches indicate some difficulty while by iteration 9 the match is

quite good. It happens that the SPLINE estimates of the parameters

are excellent.

Although one cannot be certain, for the AVE scheme it does

appear that the MLE procedure is converging to a local minimum of
/ jN
i We suspect, however, that the problem (?N) suffers a lack of

i identifiability. (See [8] for a further discussion of this

matter.) The problem ( N) for SPLINE seems to be much better

behaved.

In order to investigate further identifiability for problems

with unknown initial data, we made further computations for this

example using the same dynamics, changing only the initial data to

n th sm (s) up+ sa - < s < 0.

Using the same start-ups as above, we found that SPLINE converged
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for all N values, whereas AVE never did. Results are summarized

in Table 7.1.2.

/
/

I.?
K

Ii
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AVE SPLINE

-N -N -N Z
N ai 1 Iz*(0)-z C0)I N aI I (0)-Z (0)l

2 -4.4103 2.08 2 -4.4382 .1595

4 -4.9924 4.53 4 -3,9381 .0867

8 -4.2651 41.76 8 -4.0031 .0287

16 did not converge 16 -4.0031 .0201

32 did not converge 32 -4.0001 .0386

TABLE 7.1.1

4AVE SPLINE

N -N l*O-N 1 O N -N 1 Iz*(O)-ZN(O)I

2 2 -4.5201 .0563

4 4 -4.0975 .0318
did not converge

8 8 -4.0282 .0123

16 16 -4.0123 .0193

32 32 -4.0122 .0936

TABLE 7.1.2

(linear initial data)
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N 4 ESTIMATE OF INITIAL DATA

k~t .05x(t) + a x(t-1) +u(t

x(O) n Ys(t /~s
4

4.80

-.- 4

_4 4

44 I-

A

-1 .61 a

-4.81

-8-00 I
-1.00 -0.81 -0.61 -0.41 -0.21 -0.01

TJIME
FIGURE 7.1.1
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3.00

AVE N = 8

AM - .05x(t) + aix(t-1) +- u 1 (t) NL T

x( , xO(s) -YS

.+.+ data a*--4.0

1

0.6 AVE Moe a+ 0
=-. z( 01

+

0.6 + ++

+4 +

+++++++++++

-3.00

0.0 00.61 4012 .020

+ I+

FIUE+. .
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3.00

AVE N =8

:k(t) -. 05x(t) + a x(t-l) + u (t) MLE ITR =4

x (O) 1 x O(s) = P(S)

1.80 . .+ data

~1 - AVE Model

0.60 +

+

0.6 + +

+ +

+ + +

+ ++ +

++++++++ ++

-3.00

0.0 0.008 .2 .0 +

T+

FIUE4. .
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3.00 _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _

AVE N = 8

MLE ITR = 9

k(t) - .05x(t) + a x(t-1) + u (t)

x(0) = , x (S) Y C(S)

1.6 .+. data a*--4.00

AVE Model a1 8, -4.2651 iz*(0) -Z 8,9 (0)l 41.76

0.60

k 8
x

-0.61

-3.00 I II
0.00 0.40O 0.80 1.20 1.60 2.00

T IM E
FIGURE 7.1.4
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3.00 I
SPLINE N =8

MLE ITR = 0

ic(t) -. 05xc(t) + alx(t-L) + ui 1 (t)

x (0) = 1 x 0 (s) - cp (s)

1.50 + ++ data at -4. 0

-SPLINE Model S80--3.0 )z*(0) z 8 0 (0)I

++

+

0.60 +4+

+ +

+ + +

-0.61 4+4

+ 4

+.4 +

+. +
4+ 

++++

-3. Do

0.000.400.801.201.602.0

T. I4.

FIUR 7+.
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3.00 H
SPLINE N = 8
MLE ITR = 4

~()-.05x(t) + a X(t-1) + (t

x(O) X0 TI, (s) T~(s)

1.. .. data

-SPLINE Model

+ 
+

-0.6

++

+. +

+ +.

-3.00

00.61 0.004012..6.0

4.T I4M.

FIUE.. .
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3.00 1

SPLINE N = 8

MLE ITR = 9
i(t) - .05,c(t) + a x(t-L) + u (t)

x(0) T) x x(s) y (s)

*1.80 .-I.i. data a* -4. 0

'I SLIE odl 4803,9 8,9
SPIEMdla 8 ' _403 z*(0) z(0)1 .0287

0.60

8

/ 0.61

I ~-3.00 I IIII
0.00 0.'40 0.80 1.20 1.60 2.00

T TI M E
*1 FIGURE 7.1.7
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Example 7.2

We consider an equation with a continuous (a constant function)

kernel in which we wish to estimate the kernel, a system coeffic-

ient, and the time delay. The model is assumed to be of the form

0
(t) = alx(t-r) k f x(t+s)ds U.l(t),

-r

with initial data

xO(s) 1, -r < s < 0,

and output

y(t) - x(t).

The true parameters a* = -3.0, k* -1.0 and r* 1.0 were esti-I
mated using start-ups of

a ,0 = 5, kN ' 0  15 rN ' 0  1.5

Runs were made for N = 2, 4, 8 and 16. The MLE algorithm for the

AVE scheme did not converge for N = 2 and 4. However, for N = 8

and 16 the AVE scheme converged but produced rather poor parameter

estimates. The SPLINE scheme converged for each N = 2, 4, 8, 16

and for N > 4 produced good parameter estimates. The numerical

results for this problem are summarized in Tables 7.2.1 and 7.2.2,

where eN -N y is the error.
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Figures 7.2.1 through 7.2.4 compare the N = 8 AVE and SPLINE

data fits. In particular, Figures 7.2.1 and 7.2.2 show the N = 8

AVE start-up and converged data fits, respectively. Figures 7.2.3

and 7.2.4 show similar results for the SPLINE procedure.

AVE

-N rN -N
N r K1 lNI

2 did not converge -

4 did not converge -

8 .8802 .2182 -4.1641 2.0657

16 .9383 -. 3806 -3.5535 1.2346

Y= 1.0000 -1.0000 -3.0000

Table 7.2.1

SPLINE

NN -NN r k 1 leNI

2 .9100 -.4376 -3.4478 1.1002

4 .9896 -1.0087 -3.0580 .0071

8 1.0018 -1.0390 -2.9953 .0455

16 1.0042 -1.0410 -2.9841 .0611

Y* = 1.0000 -1.0000 -3.0000

Table 7.2.2
Ij
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2.00
AVE N = 8

alt -ax(t-r) + k x(t+s) ds + u. (t) =

+r +
++

0.20 + +

++

0.41

+ +

+ +
++

+ +.

+.4 + +.

+. +

-1 2 +. +

AC- 
+ +

++ ++++++++

-2.00

0.00 4.012 1.6020

4.T

FIUE.. .
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2.00

AVE N = 8

0 MLE ITR=4
x(t) - ax(t-r) + k J x(t+s) ds + u (t)

-r

+++ data a* = -3.0 r* = 1.0 kk = -1.0
1.20 - AVE Model a8'4 - -4.1641 r8'4 - .8802 kN,4= .

0.40

/ -4

0.44
.. x

/
1

-1.20 -44

0.00 0.LIO 0.80 1.20 1.60 2.00

TIME IFIGURE 7.2.2 . .

. . . . . ,' p
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2.00 1 1__ __ _ __ 1__ _ ___1_ _

SPLINE N = 8

MLE ITR = 0
ic(t) a ax(t-r) + k So x(t+s) ds + u (t)

+ ++I data a*--3.0 r* 1.0 k* =-1.0 +

1.20 -SPLINE Model a 8 '0 
=-3.5 r 8 ,0 =1.5 k 8 ,0 =-1.5 +

0.40

-0.1 + +

+ ++

-1 2 ++

+x 8

-2.00

0.0 0.00+.2 .020

FIUE7+ 2
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2.00 -r 1 1 1 1
SPLINE N = 8

MLE ITR = 6
- (t) -alx(t-r) +-k f 0x(t+s) ds +i u (t)

-r

+ ++ data a*=-3.0 r* =1. 0 k-=-1.0

1.20 8,6 8 86
SPLINE Model a,' -2.9953 r 1.0018 k '=-1.0

0.140 -

-0.141 /8

-1.20

-2.00

0.00 0.40 0.80 1.20 1.60 2.00

T IM E
FIGURE 7.2.4
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Example 7.3

In our final example we consider an oscillator with retarded

damping and retarded restoring forces. We seek to estimate the

coefficients of the delayed terms and the time delay itself. The

system is governed by the equation

R(t) + 16x(t) + aok(t-r) + alx(t-r) = (t),

with initial data

xo(s) 01, o(S) 0, -r < s < 0,

and output

/ y(t) = x(t).

I This second-order equation is equivalent to the two-dimensional

system

d [xl(t) 0(t) 0 o xl(t-r) +
C L 16 x -a1  a + u l(t),

2 I 2 L -a( t. 2 (tr 1]

with initial condition

[ xl , -r < s < 0,
I0
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and output

y t ) = 1 ]

I x2(t)

The true parameters to be estimated are a = 10.0, a* = -10.0

and r* = 1.0. Start-up values for each run were

N 0 11.0, a N0 9, r N , 0 1 2
0 1 =

Convergence results for this example are summarized in Tables 7.3.1

and 7.3.2. At N = 16 the relative k1 error (leNI/ly*I) for AVE is

approximately 3.5%, while the N = 16 SPLINE scheme produced a

relative k 1 error of less than 1%.

Figures 7.3.1 and 7.3.2 show the N = 4 converged data fits for

AVE and SPLINE, respectively. For N > 8, the data fits are nearly

perfect and are not shown.

-lJ
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AVE

-N -N -N lN
Na 0  a 1 reN

2 did not converge

4 54.5124 -9.1876 2.4190 46.7439

8 19.4941 -9.4927 1.3506 10.3520

16 10.6433 -9.9089 .9998 .7346

Y = 10.0000 -10.0000 1.0000

Table 7.3.1

SPLINE

NaN a Nr N ei

2 9.2585 -10.5360 1.0908 1.3683

4 10.0927 -10.0619 1.0076 .1622

8 9.9724 -10.0177 1.0010 .0463

16 9.9811 -10.0108 1.0017 .0314

= 10.0000 -10.0000 1.0000

Table 7.3.2
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L3.t00
AVE N = 4

MLE ITR = 4

~i(t) + 16x(t) + a k(t-r) + a x(t-r) u (t)

*+dt a 1. a* - 10.0 r* =1.0

4,4 4,4 4 4
2.410 - AVE Model ao 54.5124 a,,* -9.1876 r 2.4190

1.80 4-4- ++++

1.20 +

X4 +

++ +

0.60

r". 0 0~-40 0.80 1.20 1.60 2.00

T IM E
FIGURE 7.3.1
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3.00

SPLINE N = 4
MLE ITR = 4

K(t) + 16x(t) + a 0 (t-r) + a~x(t-r) u1(AM

.. . data a*0 10.0 a* = -10.0 r* =1.0
0 1

2.40 -SPLINE Model a 4 ,4 10.0927 a 44 _10.0619 r44=107
01

1.80 ++++ +

1.20 +

+

x 40,--4 ++

+

1.20 +

0.000.004/.012 .020
T I M+

FIGUR 7.3.

77
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